REPORT ON SOIL INVESTIGATION WORK FOR THE PROPOSED MULTISTORIED BUILDING AT J.L. NO.- 29, R.S. & L.R. PLOT NO.135, R.S. & L.R. KHATIAN NO.- 352,355,356,362,402, MOUZA- RAIDI, BLOCK- KULTI.

SOIL INVESTIGATION DONE BY:-

ASSOCIATED FOUNDATION ENGINEERS
20, K. N. SEN ROAD,
KOLKATA-700 042
DIAL:- 2442-5085 (O)
2418-4018 (R)

98310-69856 (M) 94331-37299 (M)

NOVEMBER - 2021

PROJECT: Proposed Multistoried Building at

ASSOCIATED FOUNDATION SHEET NO.

1

J.L. No.- 29, R.S. & L.R. Plot No.- 135, Mouza- Raidi. ENGINEERS

LIST OF CONTENTS

	Subject		Nu	mber	
A.	General Bore Hole Location Map		2		
B.	Field Operations Boring, Sampling and Standard Penetration Tests		4 4		
C.	Laboratory Testing		5		
D. I.	Sub-Soil Stratification and Properties Sub-Soil Stratification Generalized Sub-Soil Profile 'N' Vs. Depth Plot		5 – 10 5 – 09 7 8		
II.	Sub-Soil Properties Average Sub-Soil Profile with Properties		09 10		
E.	Foundation Considerations and Bearing Capacity	1	1 – 1	2	
F.	Recommendations	1.	3 & 1	4	
	APPENDIX	15	-	26	
	LABORATORY TESTS RESULTS TABLE		16		
	BORE HOLE LOG DATA SHEETS/FIELD RECORDS	17	-	20	
	CONSOLIDATION CHARACTERISTICS	21	-	24	
	GRAIN SIZE DISTRIBUTION CURVES	25	-	26	

PROJECT: Proposed Multistoried Building at ASSOCIATED FOUNDATION NO.

J.L. No.- 29, R.S. & L.R. Plot No.- 135, Mouza- Raidi. ENGINEERS 2

REPORT ON
SOIL INVESTIGATION WORK FOR THE PROPOSED
MULTISTORIED BUILDING AT J.L. NO.- 29, R.S. & L.R. PLOT NO.- 135, R.S. & L.R. KHATIAN NO.- 352,355,356,362,402, MOUZA- RAIDI, BLOCK- KULTI.

A. GENERAL

It has been proposed to construct a multi storied building at the above location.

For ascertaining the safe bearing capacity of soil, it was decided to carry out a detailed sub-soil investigation and M/s. Associated Foundation Engineers was awarded this work for suggesting the most suitable type of foundation for the above project.

The scope of the work comprised of sinking 4 nos. of bore holes ($4 \times 10 \text{ m.}$)

The bore holes were of 150mm, in diameter. Standard penetrometer tests were conducted at close intervals of depth. Undisturbed soil samples were recovered at suitable intervals and tested in the laboratory. Disturbed soil samples were also recovered at close intervals of depth for logging & identification purposes.

Depending on the above, this report presents bore logs, soil profiles & laboratory tests results. It is seen that the sub-soils are of medium quality.

J.L. NO.- 29, R.S. & L.R. PLOT NO.- 135, MOUZA- RAIDI.

1. SCHEMATIC PLAN OF BORE HOLES.

SHEET -ASSOCIATED PROJECT: Proposed Multistoried Building at NO. FOUNDATION

J.L. No.- 29, R.S. & L.R. Plot No.- 135, Mouza- Raidi. ENGINEERS

4

B. FIELD INVESTIGATION

The various operations adopted during the coarse of this investigation are discussed in brief below.

BORING

For sinking the bore holes, the shell and auger method of boring was adopted. The holes were of 150mm. in diameter. These were advanced up to the required depth. Casing pipes of 150mm. diameter were used initially and bentonite slurry later on for side stabilisation of bore holes.

SAMPLING

During the course of boring, undisturbed and disturbed samples were collected at fairly regular intervals. Undisturbed samples of 10cm. diameter were recovered (whenever feasible) by means of open drive sampling using samplers of standard length 45cm. A two tier assembly was used with a cutting shoe attached to the lower end of thetube. This was driven by a jarring link as far as practicable. After withdrawal, both ends of the tubes were sealed with paraffin wax capped, labeled and transported to the laboratory. A number of disturbed samples were also collected at suitable intervals for identification and logging purposes.

STANDARD PENETRATION TESTS

A number of standard penetration tests were conducted at regular intervals in thebore holes. The tests were conducted by driving a standard split spoon sampler by means of a monkey of 65kg. weight falling freely from a height of 75cm. The number of blows required for every 7.5cm. Penetration was recorded up to a total penetration of 60cm. The S.P.T. or 'N' value was estimated as the number of blows required for the middle 30cm. penetration.

١	PROJECT: Proposed Multistoried Building at	ASSOCIATED	SHEET
l		FOUNDATION	NO.
I	J.L. No 29, R.S. & L.R. Plot No 135, Mouza- Raidi.	ENGINEERS	5

The split spoon sampler conformed to I.S. specification with an outer diameter of 50.8mm, and an inner diameter of 35mm. After completion of the test the samplerwas withdrawn, It was opened and the soil specimen was preserved for logging and identification purposes.

C. LABORATORY TESTING

The following laboratory tests were performed on undisturbed and disturbed samples to determine the engineering properties of the sub-soil at different depths. All the tests were carried out according to Indian standard specifications.

- 1. Natural Moisture Content.
- 2. Atterberg Limits (LL. & PL.)
- 3. Hydrometer and Sieve Analysis.
- 4. Bulk Density (wet & dry)
- Specific Gravity.
- 6. Strength Tests.
- 7. Consolidation.

The results of these tests have been presented systematically in result sheets later on.

PROJECT: Proposed Multistoried Building at	ASSOCIATED	SHEET
	FOUNDATION	NO.
11. No 29. R.S. & L.R. Plot No 135, Mouza- Raidi.	ENGINEERS	6

D. SUB-SOIL STRATIFICATION AND PROPERTIES

I. SUB-SOIL STRATIFICATION

The exploratory borings at the site revealed a medium quality of sub-soil. The generalised soil profile encountered at the site is shown in fig.2 and in the enclosed bore hole log data sheets in the appendix. The variation of 'N' values with depth is shown in figure 3 & in the bore hole log data sheets. The average sub-soil profile with properties are shown in fig. 4. The results of the laboratory tests conducted to determine the engineering properties of the sub-soil are presented in the appendix. The other back-up sheets are also presented therein. Based on visual classification and results of field & laboratory tests two major strata are identified.

Brief descriptions of the various soil strata are given below: -

1. STRATUM - I

Hard light grey to deep grey to brownish grey clayey silt with kankars, moorums etc extends down to a depth of 4.12 m. below E.G.L.

The maximum & minimum values of 'N' observed in this layer are >100 & 52 respectively.

The average engineering properties are as follows:-

Bulk density	1.93	gm /c.c.
Dry density	1.58	gm /c.c
Water content	21	%
Specific gravity	2.68	
Void ratio	0.70	
Cohesion	0.63	kg/sq.cm
Friction angle	0°	degree
Liquid limit	37	%
Plastic limit	17	%
Sand size particle	11	%
Silt size particle	66	%
Clay size particle	23	%

According to IS classification system, it may be symbolised as CL combination.

PROJECT: PROPOSED MULTISTORIED BUILDING AT J.L. NO.- 29, R.S. & L.R. PLOT NO.- 135, MOUZA- RAIDI.

E.G.L.	3.00т	
BH - 4		
	HARD LIGHT GREY TO DEEP GREY TO BEEP GREY TO BEDWISH GREY CLAYEY SILT WITH KANKARS, MODRUMS ETC. CL GL 10.60m	
BII - 3	84	
	HARD LIGHT GREY TO DEEP GREY TO BEEP GREY TO BROWNISH GREY CLAYEY SILT WITH KANKARS, MODRUMS ETC. S.00m BLACK CLAYEY SILT, CDAL.	
BH - 2	S:00m	
w.	HARD LIGHT GREY TO DEEP GREY TO BROWNISH GREY CLAYEY SILT WITH KANKARS, MODRUMS ETC. CL 4.50m BLACK CLAYEY SILT, CDAL. 10.60m	
E.G.L. BH - 1	4.50m	

FIG. - 2. GENERALISED SUB-SOIL PROFILE.

PROJECT: Proposed Multistoried Building at ASSOCIATED FOUNDATION NO.

J.L. No.- 29, R.S. & L.R. Plot No.- 135, Mouza-Raidi. ENGINEERS 9

2. STRATUM - II

Black clayey silt, coal extends from 4.12 m. down to the termination depth of 10.60 m. below E.G.L.

The value of 'N' observed in this layer is >100.

From the above, it can be said that the sub-soils are of medium quality.

II. SUB - SOIL PROPERTIES

The details of laboratory tests results have been presented sequentially in the appendix. The other back-up sheets are given therein as below:-

- 1. Laboratory tests results tables.
- 2. Bore Hole log data sheets/ field records.
- 3. Consolidation characteristics.
- 4. Grain size distribution curves from sieve & hydrometer analysis.

Based on the bore logs and the laboratory tests results, the average sub-soil profile with the average properties are presented in fig. 4.

PROJECT: PROPOSED MULTISTORIED BUILDING AT SHEET NO-10 J.L. NO.- 29, R.S. & L.R. PLOT NO.- 135, MOUZA- RAIDI.

FIG. - 4. AVERAGE SUB-SOIL PROFILE WITH PROPERTIES.

PROJECT: Proposed Multistoried Building at	ASSOCIATED	SHEET
air C	FOUNDATION	NO.
J.L. No 29, R.S. & L.R. Plot No 135, Mouza- Raidi.	ENGINEERS	11

E. FOUNDATION CONSIDERATIONS AND BEARING CAPACITY

The proposed construction would be a multi storied building. Accordingly the loading would be moderate which would depend also on column spacing for the proposed RCC framed structure. However, the foundation design would not only depend on the height and loading but also on the sub-soil condition. For the sub-soil condition the two necessary conditions are to be satisfied i.e. the soil would not fail in shear and the settlement should be within permissible limit.

Shallow foundations in the form of individual footings may be investigated at first in this case for supporting lightly to moderately loaded structures. Individual footings of size 2.0m to 3.0m. founded at a depth of 1.2 m. below G. L. may be used according to the column spacing and planning of the building. Net allowable bearing capacities for such footings have been calculated keeping the settlement within permissible limit of 7.5 cm. and these have been shown below:

Footing Size	Net Allowable Bearing Capacity, (t/sq.m.)	Settlement(mm.)	Recommended Capacity, (t/ sq.m.)
2.0m x 2.0m	16.9	30.6	16.9
2.5m x 2.5m	16.6	35.7	16.6
3.0m x 3.0m	16.3	41.0	16.3
15.0m x 15.0m	15.4	67.5	15.4
25.0m x 25.0m	15.2	71.4	15.2

Shallow foundations in the form of 1.5m., 2.0m. & 2.5m. wide strip footings have also been investigated. Net allowable bearing capacities with permissible settlements of 7.5 cm. for such footings have been worked out and shown below:-

Footing Size	Net Allowable Bearing Capacity, (t/sq.m.)	Settlement(mm.)	Recommended Capacity, (t/sq.m.)
1.5m wide	14.6	39.5	14.6
2.0m wide	14.1	43.4	14.1
2.5m wide	13.8	46.3	13.8

J.L. ND.- 29, R.S. & L.R. PLOT NO.- 135, MOUZA- RAIDI.

C = 0.63 KG/SQ.CM. Ø = 0 degree Mv = 0.022 SQ.CM/KG α = 0.85 E = 189 kg/sq.cm.

> HARD LIGHT GREY TO DEEP GREY TO BROWNISH GREY CLAYEY SILT WITH KANKARS, MOORUMS ETC.

(-)4.0m.

DATION DESIGN MODEL FOR SHALLOW FOOTINGS.

PROJECT: Proposed Multistoried Building at ASSOCIATED FOUNDATION NO.

J.L. No.- 29, R.S. & L.R. Plot No.- 135, Mouza- Raidi. ENGINEERS 13

F. RECOMMENDATIONS

Based on the field and the laboratory tests results and the above discussions, the followings are summarized:-

- 1. The sub-soils are of medium quality.
- 2. Hard light grey to deep grey to brownish grey clayey silt with kankars, moorums etc extends down to a depth of 4.12 m. below E.G.L. The strength of this layer is medium (C = 0.63 kg/sq.cm.) and compressibility is medium (Mv = 0.022 sq.cm./ kg for 0.50 to 1.0 kg/sq.cm. pressure range).
- 3. Black clayey silt, coal extends from 4.12 m. down to the termination depth of 10.60 m. below E.G.L.
- 4. Depth of foundation for the proposed construction is estimated at (-) 1.2m. below the E.G.L. However, the foundations should go at least 200 to 300mm. in side the parent soil depending on the location.
- 5. The standing water level was observed at (-) 3.25 m. below the E.G.L. during boring.
- Isolated footings, if used, are suggested to be tied at the foundation level to reduce the differential settlement. <u>Construction in stages is recommended</u>.

PROJECT: Proposed Multistoried Building at	ASSOCIATED	SHEET
e y a v e ⊆	FOUNDATION	NO.
J.L. No 29, R.S. & L.R. Plot No 135, Mouza- Raidi.	ENGINEERS	14

7. The following net safe bearing capacity values may be taken for routine design:-

Type of Footing	Size	Net safe bearing capacity, t/sq.m.
Individual	2m x 2m	16.9
	2.5m x 2.5m	16.6
	3.0m x 3.0m	16.3
	15.0m x 15.0m	15.4
	25.0m x 25.0m	15.2
Strip	1.5m Wide	14.6
	2.0m Wide	14.1
	2.5m Wide	13.8

The values for the intermediate sizes of footings should be obtained by interpolation.

FOR ASSOCIATED FOUNDATION ENGINEERS

Asim Jarkar (ASIM SARKAR)

ASIM SARKAR
BCE, ME (SOIL), M.TECH (STRUCTURE), MIGS MIE
EMPANELLED GEOTECHNICAL ENGINEER
K.M.C. No.: CLASS-1/2

PROJECT: Proposed Multistoried Building at	ASSOCIATED	SHEET
	FOUNDATION	NO.
J.L. No 29, R.S. & L.R. Plot No 135, Mouza- Raidi.	ENGINEERS	15

A P P E N D I X	15	•	26
LABORATORY TESTS RESULTS TABLE		16	
BORE HOLE LOG DATA SHEETS/FIELD RECORDS	17	-	20
CONSOLIDATION CHARACTERISTICS	21	-	24
GRAIN SIZE DISTRIBUTION CURVES	25	-	26

Project	: PROPOSI	Project: PROPOSED MULTISTORIED		BUILDING AT		7004	TAIOC	1 2	A SOCIATED FOLINDATION ENGINEERS	HNICNE	FRS	SHS	SHEET NO. 16	16
J.L. No.	- 29, R.S. 8	J.L. No 29, R.S. & L.R. Plot No 135,	1 20	Mouza- Raidi.		ASS	1				2			!
TABLE	: 1. LAB(TABLE: 1. LABORATORY TESTS	STS RESULT	5										
BORE	SAMPLE	DEPTH (M.)	BULK	DRY	3	9	60	ပ	0	11	٦d	SAND	SILT	CLAY
HOLE	ON.		DENSITY	DENSITY	%			(kg/sqc	(kg/sqc (Degree)	%	%	%	%	%
	E)		(gms/c.c.) (gms/cc)	(gms/cc)				Ê	in and the second					
BH-1	UDS-1	1.00-1.45	1.90	1.58	20	2.69	0.711	0.56	00	39	19	7	64	27
BH-1	UDS-2	2.50-2.95	1.92	1.57	22	2.68	0.693	09.0	°	37	17	6	29	24
BH-2	UDS-1	1.00-1.45	1.91	1.59	20	2.69	0.704	0.59	°0	38	17	9	69	25
BH-2	UDS-2	3.50-3.95	1.93	1.57	23	2.67	0.682	99'0	°0	36	16	10	68	22
BH-3	UDS-1	1.00-1.45	1.93	1.58	22	2.66	0.719	0.67	°0	37	17	13	29	20
BH-4	UDS-1	1.00-1.45	1.94	1.60	21	2.67	0.704	0.68	°0	36	16	14	65	21
BH-4	UDS-2	2.50-2.95	1.95	1.60	22	2.68	0.682	0.67	°0	35	15	15	65	20
			1 93	1.58	21.43	2.68	0.70	0.63	#VALUE!	36.86	16.71	10.57	66.43	22.71

ROJECT: PROPOSED	C MUL TI	STOR	PIED BUILDING	A T			-	ASSECTATE	D SHEET
ROJECT: TRUIT DOES			VIED BOILDING (41				ASSOCIATE	
7 29 PS &	I R P	ιпт	NO - 125 MOUZ				1	FOUNDATIO	17
L. ND 29, R.S. &			133, MUUZ	A- RAI	101	•	1	-NOINEEKS	, 17
BORE L	DG	DATA	SHEET				-	BORE HO	DLE NO: 1
NETROMETER (SPT)	NDS.			NDS.	T	COMM	ENC	ED ON:	28-09-2021
NETROMETER (SPT)	6	UNDI	(STURBED (UDS)	2	(COMP	LET	ED ON:	28-09-2021
INE (PC)			ETROMETER (SPT)	5000]	BORE	НΩ	LE DIA :	150mm.
ANE (V)		DIST	URBED (DS)	1	F	R.L. [JF (GROUND :	
					,	WATE	IR S	TRUCK AT :	3.50m
					1	STAN	DIN	WATER LEV	EL: 3.50m
N .				N -	L VA	I UE		S A M	PLES
DESCRIPT	ΙΟN		SYMBOL		50	0.000.000.000.000	5 10	0 REF NO.	DEPTH (M)
Ÿ-					T			DS - 1	0.50
								UDS - 1	1.00- 1.45
								ו – 2עוט	1.00 1.10
	ם הככם							(No. of State of Stat	4.50 2.10
ARD LIGHT GREY TO REY TO BROWNISH	GREY	_	-	N =	=63	3 9		SPT - 1	1.50 - 2.10
LAYEY SILT WITH	KANKAR	۵,							
								D.C O	2.50- 2.95
	9							UDS - 5	2.50- 2.75
					N	‡8 0		SPT - 2	3.00 - 3.60
					Ϊ		\bigvee		
							\setminus		
15 115		- 4.50M				N =	10p \	SPT - 3	4.50 - 5.10
						N =	100	SPT - 4	6.00 = 6.60
									TED FOUNDATION
									6.00 = 6.60 KOLKATA-42 KOLKATA-42
BLACK CLAYEY SILT	, CDAL.								1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
						N	=100	SPT - 5	SKOO SEN ROSEO
		10.60	1			Ν	=100	SPT : :6:	10.00 - 10.60
Yang yang								1	

ROJECT: PROPOSED MULTISTORIED BUILDING AT SHEET ASSOCIATED NO. FOUNDATION L. NO.- 29, R.S. & L.R. PLOT NO.- 135, MOUZA- RAIDI. 18 ENGINEERS LOG DATA BORE HOLE NO : BORE SHEET NETROMETER (SPT) 28-09-2021 NDS. COMMENCED ON : NDS. 29-09-2021 COMPLETED ON : NETROMETER (SPT) 5 UNDISTURBED (UDS) 150mm. BORE HOLE DIA : INE (PC) PENETROMETER (SPT) 5 DISTURBED (DS) R.L. OF GROUND : 1 ANE (V) WATER STRUCK AT : STANDING WATER LEVEL : 3.00m SAMPLES N - VALUE DESCRIPTION SYMBOL 50 75 100 REF NO. DEPTH (M) 25 0.50 DS - 1 1.00- 1.45 UDS - 1 MARD LIGHT GREY TO DEEP REY TO BROWNISH GREY N =52 • SPT - 1 2.50 - 3.10LAYEY SILT WITH KANKARS, 100RUMS ETC. UDS - 2 3.50- 3.95 -5.00MN +10b SPT - 2 5.50 - 6.10N =100 ♦ SPT - 3 7.00 - 7.60BLACK CLAYEY SILT, COAL. NOTIFCHUOTE =100 SPT - 4 /8.50 KOLKATA K.N. SEN RO **=100** ♦ SPT - 5 10.00 - 10.60 1 . . . 10.60M

JECT: PROPOSED	MULTI	STOR	IED BUILDING A	/T		ASSOCIATE	D SHEET
NO 29, R.S. &	L.R. PI	LOT I	NO 135, MOUZ	A- RAII	DI.	FOUNDATIC ENGINEERS	
2005	16						
BORE LO	10000	DATA	SHEET			BORE HO	OLE NO: 3
NETROMETER (SPT)	NDS.			NDS.			29-09-2021
NETROMETER (SPT)	6		STURBED (UDS)	1		TED ON:	01-10-2021
INE (PC) ANE (V)		Name and the	TROMETER (SPT) URBED (DS)			GROUND :	15Umm.
			255 (03)	1		STRUCK AT :	3.00m
						NG WATER LEV	
D. C. C. C. C.	T D		6 7	N - V			IPLES
DESCRIPT	ı U N		SYMBOL.			100 REF NO.	DEPTH (M)
	- 1					DS - 1	0.50
HARD LIGHT GREY TO	DEE0					UDS - 1	1.00- 1.45
HARD LIGHT GREY TO FREY TO BROWNISH (CLAYEY SILT WITH K MODRUMS ETC.	GREY	S,		N =79		SPT - 1	1.50 - 2.10
		- 4.00M	,		N =100	SPT - 2	4.00 - 4.60
					N =10	0 • SPT - 3	5.50 - 6.10
BLACK CLAYEY SILT	, COAL.	P)			N =100	D ◆ SPT - 4	7.00 - 7.60
					N =10	00 • SPT - 5	8.50 - 9.10
	4 -	10.60	и}		N =10	0 • SPT - 5 °	10.00 - 10.60

ROJECT: PROPOSED MULTISTORIED BUILDING AT SHEET ASSOCIATED NO. FOUNDATION IL. NO.- 29, R.S. & L.R. PLOT NO.- 135, MOUZA- RAIDI. 20 ENGINEERS LOG DATA BORE SHEET BORE HOLE NO : ENETROMETER (SPT) NDS. 02-10-2021 COMMENCED ON : NOS. 03-10-2021 COMPLETED ON : ENETROMETER (SPT) UNDISTURBED (UDS) 6 ONE (PC) 150mm. BORE HOLE DIA : PENETROMETER (SPT) DISTURBED (DS) R.L. OF GROUND : ANE (V) 1 WATER STRUCK AT: 3.50m STANDING WATER LEVEL : 3.50m SAMPLES N - VALUE SYMBOL DESCRIPTION 75 100 REF NO. DEPTH (M) 25 50 0.50 DS - 1 1.00- 1.45 UDS - 1 ARD LIGHT GREY TO DEEP GREY TO BROWNISH GREY CLAYEY SILT WITH KANKARS, • N =42 1.50 - 2.10SPT - 1 MOORUMS ETC. UDS - 2 2.50- 2.95 -3.00M h +10b SPT - 2 3.50 - 4.10N =100 + SPT - 3 5.50 - 6.10N =100 ♦ SPT - 4 6.50 - 7.10BLACK CLAYEY SILT, COAL. 8 OGALDINE N =100 + SPT - 5 KN. SENRO 10.00 - 10.60 =100 + SPT - 6 10.60M

ROJECT: PROPOSED MULTISTORIED BUILDING AT ASSOCIATED SHEET $N\square$. L. NO.- 29, R.S. & L.R. PLOT NO.- 135, MOUZA- RAIDI. ENGINEERS 21 e VS LOG p CURVE BORE HOLE UDS NO _____ 1,00m DEPTH (M)____ 0.711 6" 39 LIQUID LIMIT % 19 PLASTIC LIMIT % 0.72 0.70 0.68 0.66 0.64 0.62 0.60 0.58 0.56 4.0 0.5 1.0 2.0 8.0 0.25 0.1 PRESSURE RANGE KG/SQ.CM 1,.

ROJECT: PROPOSED MULTISTORIED BUILDING AT ASSOCIATED SHEET $N\square$. FOUNDATION L. NO.- 29, R.S. & L.R. PLOT NO.- 135, MOUZA- RAIDI. ENGINEERS 22 VS LOG p CURVE BORE HOLE UDS NO _____ 1.00m DEPTH (M)_____ 0.704 0.70 e_{0} 38 LIQUID LIMIT %____ 17 0.68 PLASTIC LIMIT % 0.66 0.64 0.62 0.60 0.58 0.56 0.54 0.52 0.50 0.48 0.46 0.44 KN. SENTO 4.0 8.0 2.0 0.5 1.0 0.25 0.1 PRESSURE RANGE KG/SQ.CM

1

ROJECT: PROPESED MULTISTORIED BUILDING AT ASSOCIATED SHEET L. NO.- 29, R.S. & L.R. PLOT NO.- 135, MOUZA- RAIDI. ENGINEERS $N\square$. 23 e VS LOG p CURVE BORE HOLE UDS NO _____ 1.00m DEPTH (M)_____ 0.719 60 37 LIQUID LIMIT %____ 17 PLASTIC LIMIT % 0.71 0.69 0.67 0.65 0.63 8.0 0.5 1.0 2.0 4.0 0.25 0.1 PRESSURE RANGE KG/SQ.CM

ROJECT: PROPOSED MULTISTORIED BUILDING AT ASSOCIATED SHEET L. NO.- 29, R.S. & L.R. PLOT NO.- 135, MOUZA- RAIDI. ENGINEERS $N\square$. 24 e VS LOG p CURVE BORE HOLE UDS NO ____ 2,50m DEPTH (M)_____ 0.682 e^{a} 35 LIQUID LIMIT %_____ 15 PLASTIC LIMIT % 0.69 0.67 0.65 0.63 0.61 0.59 0.57 0.55 0.53 0.51 0.49 16 20 2.0 4.0 8.0 0.5 1.0 0.1 0.25 PRESSURE RANGE KG/SQ.CM . --- PROJECT: MULTISTORIED BUILDING AT

JL. NO.- 29, R.S. & L.R. PLOT NO.- 135, MOUZA- RAIDI.

ASSOCIATED FOUNDATION ENGINEERS

SHEET

NO.

25

PROJECT MULTISTORIED BUILDING AT

J.L. NO.- 29, R.S. & L.R. PLOT NO.- 135, MOUZA- RAIDI.

ASSOCIATED

SHEET

NO.

FOUNDATION ENGINEERS

26

